Electrical and Thermal Interface Conductance of Carbon Nanotubes Grown under Direct Current Bias Voltage

نویسندگان

  • Placidus B. Amama
  • Chun Lan
  • Baratunde A. Cola
  • Xianfan Xu
  • Ronald G. Reifenberger
  • Timothy S. Fisher
چکیده

The electrical resistance of individual multiwalled carbon nanotubes and the thermal interface resistance of nanotube arrays are investigated as functions of dc bias voltage used during growth. Nanotubes were grown from Fe2O3 nanoparticles supported on Ti/SiO2/Si substrates by microwave plasma chemical vapor deposition (MPCVD) under dc bias voltages of -200, -100, 0, +100, and +200 V. Electrical resistances of individual nanotubes were obtained from I-V measurements of randomly selected nanotubes, while thermal interface resistances of nanotube arrays were measured using a photoacoustic technique. The study reveals that individual nanotubes and nanotube arrays grown under positive dc bias voltage (+200 V) show significant increases in their electrical and thermal interface conductance, respectively. The nanotubes have been further characterized by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and electron microscopy in order to account for the marked differences in electrical and thermal interface conductance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes.

Raman spectra of individual pristine suspended single-walled carbon nanotubes are observed under high electrical bias. The LO and TO modes of the G band behave differently with respect to voltage bias, indicating preferential electron-phonon coupling and nonequilibrium phonon populations, which cause negative differential conductance in suspended devices. By correlating the electron resistivity...

متن کامل

Gate voltage controllable non-equilibrium and non-ohmic behavior in suspended carbon nanotubes.

In this work, we measure the electrical conductance and temperature of individual, suspended quasi-metallic single-walled carbon nanotubes under high voltage biases using Raman spectroscopy, while varying the doping conditions with an applied gate voltage. By applying a gate voltage, the high-bias conductance can be switched dramatically between linear (Ohmic) behavior and nonlinear behavior ex...

متن کامل

High-field electrical transport in single-wall carbon nanotubes

Using low-resistance electrical contacts, we have measured the intrinsic high-field transport properties of metallic single-wall carbon nanotubes. Individual nanotubes appear to be able to carry currents with a density exceeding 10(9) A/cm(2). As the bias voltage is increased, the conductance drops dramatically due to scattering of electrons. We show that the current-voltage characteristics can...

متن کامل

Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters

Individual semiconducting single-walled carbon nanotubes ~SWNTs! of various diameters are studied by electrical measurements. Transport through a semiconducting SWNT involves thermal activation at high temperatures, and tunneling through a reverse biased metal–tube junction at low temperatures. Under high bias voltages, current–voltage (I – V) characteristics of semiconducting SWNTs exhibit pro...

متن کامل

Tomonaga-Luttinger liquid features in ballistic single-walled carbon nanotubes: conductance and shot noise.

We study the electrical transport properties of well-contacted ballistic single-walled carbon nanotubes in a three-terminal configuration at low temperatures. We observe signatures of strong electron-electron interactions: the conductance exhibits bias-voltage-dependent amplitudes of quantum interference oscillation, and both the current noise and Fano factor manifest bias-voltage-dependent pow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009